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1

Low Rank Permutation Groups

1.1 Introduction

Many interesting finite geometries, graphs and designs admit automor-
phism groups of low rank. In fact, it was a study of the rank 3 case which
led to the discoveries and constructions of some of the sporadic simple
groups (see [Gor82]). For several classification problems about graphs
or designs, the case where the automorphism group is almost simple is
of central importance, and many of the examples have a transitive auto-
morphism group of low rank. This is the case, for example, for the clas-
sification problems of finite distance-transitive graphs [BCN89, PSY87],
and of finite flag-transitive designs [BDD88, BDDKLS90].

This book presents a complete classification, up to conjugacy of the
point stabilizers, of the faithful transitive permutation representations
of rank at most 5 of the sporadic simple groups and their automor-
phism groups. These results, summarized in Chapter 5, filled a major
gap in the existing classification results for finite, low rank, transitive
permutation groups. For each representation classified, we also give the
collapsed adjacency matrices (defined in Section 2.3) for all the asso-
ciated orbital digraphs. We use these collapsed adjacency matrices to
classify the vertex-transitive, distance-regular graphs for these low rank
representations, and discover some new distance-regular graphs of di-
ameter 2 (but of rank greater than 3) for the O’Nan group O’N, the
Conway group Coz, and the Fischer group Fiy;. We also classify the
graphs of diameter at most 4 on which a sporadic simple group or its au-
tomorphism group acts distance-transitively. It turns out that all these
graphs are well-known.
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We have tried to give enough information so that the interested reader
can duplicate most of our results, and study further the fascinating spo-
radic groups. In particular, we give presentations for most of the spo-
radic groups G having permutation representations of rank at most 5,
together with sets of words generating the appropriate point stabilizers
in G. This information allows the reader with access to a good coset
enumeration program (such as those within MAGMA [CP95] and GAP
[Sch95]) to reconstruct most of the representations studied in this book.

In the 1970s, R.T. Curtis determined many collapsed adjacency ma-
trices for inclusion in the original Cambridge ATLAS, but these do
not appear in the published ATLAS [CCNPW85]. In the early to mid
1980s, the primitive permutation representations of the nonabelian sim-
ple groups of order up to 10° (excluding the family Ly(g)) were analysed
in detail from the point of view of cellular rings (or coherent configu-
rations) by A.A. Ivanov, M.H. Klin and L.A. Faradzev [IKF82, IKF84]
(see also [FIK90, FKM94]). As part of this analysis, these represen-
tations were explicitly constructed using the CoCo computer package
[FK91], and all collapsed adjacency matrices for the orbital digraphs
were determined. Furthermore, collapsed adjacency matrices have been
constructed by others for certain specific orbital digraphs for sporadic
groups (see [ILLSS95] and its references), but we have computed all the
collapsed adjacency matrices in this book from scratch, using the meth-
ods we describe, except for two representations where explicit references
are given.

Any permutation representation of rank at most 5 is multiplicity-free
(that is, the sum of distinct complex irreducible representations), and
for primitive permutation representations, the classification in this book
has recently been extended in [ILLSS95], to give a complete classifica-
tion of the primitive multiplicity-free permutation representations of the
sporadic simple groups and their automorphism groups, together with
a classification of the graphs I' on which such a group acts primitively
and distance-transitively. It is shown that for such a distance-transitive
graph I', we have diam(I") < 4, and so I" appears in our classification.
Even more recently, Breuer and Lux [BL96] have completed the classi-
fication of the imprimitive multiplicity-free permutation representations
of the sporadic simple groups and their automorphism groups.
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1.2 Transitive permutation groups, orbitals and ranks

The symmetric group on a set §2 is the group Sym () of all permutations
of . If © is finite of cardinality n, then Sym (Q) is often denoted S,.
A permutation group G on a set Q is a subgroup of Sym (), and G is
said to be transitive on 2 if, for all a, 8 € €2, there is an element g € G
such that the image a9 of a under g is equal to . More generally, the
orbit of G containing a point a € Q is the set o€ := {a¢ | g € G}.

For the remainder of the section, let G be a transitive permutation group
on a finite set Q.

The permutation group G on {2 can also be regarded as a permutation
group on {2 x {2 by defining

(a,8) = (?,8%) (o,B€Rg€Q).

The number of orbits of G on  x § is called the rank of G on €.

If @, 8 are distinct points of 2, then the pairs (a,a) and (e, ) lie in
different orbits of G on 2 x . Thus, for || > 1, the rank of G is at least
2. A permutation group on {? is said to be 2-transitive (or doubly tran-
sitive) on {1 if it is transitive on the ordered pairs of distinct points of 2.
Thus, for |?] > 1, the 2-transitive groups are precisely the permutation
groups of rank 2. The classification of the finite 2-transitive groups was
one of the first consequences for permutation groups of the finite simple
group classification, and the problem of classifying finite permutation
groups of low rank is a natural extension of this classification.

The orbits of G on © x § are called orbitals, and to each orbital E we
associate the directed graph with vertex set ! and edge set E, the so-
called orbital digraph for E. It is easy to show that the orbitals for G
are in one-to-one correspondence with the orbits on  of the stabilizer
G, = {g € G| a% = a} of a point a € Q. This correspondence maps
an orbital E to the set of points {8 | (@, 3) € E}. The orbits of G, on
Q are called suborbits of G, and their lengths are called the subdegrees
of G.

If G has rank r, then a point stabilizer will have exactly r orbits on {2,
and we say that such a stabilizer is a rank r subgroup of G.
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1.3 Permutation representations

Let G be a group and  a set. An action of G on Q is a function which
associates to every a € 2 and g € G an element a9 of Q) such that, for
alla € Qand all g,h € G, o' = a and (a9)* = a9 . In a natural way,
an action defines a permutation representation of G on ), which is a
homomorphism ¢ from G into Sym (Q2): simply define (g)¢ € Sym (Q)
by a9 := 9. Conversely, a permutation representation naturally
defines an action of G on , leading to a natural bijection between
the actions of G on ! and the permutation representations of G on
(see [NST94, pp. 30-32]). Note also that a permutation group H on
defines a natural representation (and action) of H on 2, by defining the
representation to be the identity map.

Most of the definitions of Section 1.2 apply to permutation representa-
tions by applying them to the permutation group which is the image of
that representation. Thus, a permutation representation is said to be
transitive if its image is transitive. Similarly, the orbits of a representa-
tion are those of its image and, if the representation is transitive, then
its rank, orbitals, suborbits and subdegrees are those of its image. How-
ever, the point stabilizer G, := {g € G | af = a} for the representation
may be a proper preimage of the point stabilizer for the permutation
group image.

A permutation representation is said to be faithful if its kernel is the
trivial group of order 1, in which case G is isomorphic to its permutation
group image, and we are back to the case of permutation groups. In this
book we study faithful representations of the sporadic simple groups and
their automorphism groups. If a representation of a (sporadic) simple
group is not faithful then clearly its image is the trivial group, and a non-
faithful representation of the automorphism group of a sporadic simple
group has an image of order 1 or 2 {as a sporadic simple group has index
at most 2 in its automorphism group).

1.4 Permutational equivalence and permutational
isomorphism

There are several slightly different concepts of equivalence, or isomor-
phism, for permutation representations and permutation groups (see
[NST94, pp.32-33]). Since an abstract group may be represented in
many different ways as a permutation group, the notion of group isomor-
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phism does not provide a sufficiently refined measure for distinguishing
between different permutation representations and different permutation
groups. The most general concept of permutational equivalence concerns
different groups acting on different sets. A permutational equivalence of
permutation representations of groups G,G* acting on ,Q* respec-
tively is a pair (6, ¢) of functions, where 8 : O — Q* is a bijection and
¢ : G = G* is an isomorphism, and

(@?)8 = (aB)?

for all & € © and all g € G, and the representations (and actions) of G
and G* are said to be (permutationally) equivalent. Clearly 6 induces
a bijection between the sets of orbits of G,G* in ,Q* respectively.
Also, the restriction of ¢ to the stabilizer G, of a point a € 1 is an
isomorphism onto the stabilizer in G* of the point af € Q*. Thus the
equivalence induces bijections of the sets of orbits and point stabilizers of
the two permutation representations. In the particular case of transitive
representations of G, G* on finite sets {2, 2*, the permutational equiva-
lence (6, ¢) preserves rank and subdegrees. Moreover, this equivalence
induces a second equivalence (# x 8, ¢) of the natural representations of
G,G* acting on 2 x  and Q* x Q* respectively (namely, by defining
(a, B)(8 x 8) := (ab, 88) for all (a, 8) € N x ), such that § x § induces
a bijection from the set of orbitals of G in € x §) to the set of orbitals of
G* in Q* x Q*, and preserves the isomorphism classes of the associated
orbital digraphs.

If G = G* then the isomorphism ¢ is an automorphism of G. In the
special case where ¢ is the identity map, the equivalence (8, 1) is called
a permutational isomorphism. Thus, roughly speaking, a permutational
isomorphism amounts to a relabelling of the point set.

The notions of permutational equivalence and permutational isomor-
phism for permutation groups G,G* on 2, (}* respectively, are defined
to be the same as these concepts for their natural representations. Note
that the classification of faithful permutation representations up to per-
mutational equivalence (respectively isomorphism) is the same as the
classification of permutation groups up to permutational equivalence
(respectively isomorphism).

In our subsequent discussion we use the following notation: for a group
G, Aut G denotes the automorphism group of G, Inn G the group of
inner automorphisms of G, and Out G := Aut G/Inn G is the outer au-
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tomorphism group of G. Each element of Aut G\Inn G is called an outer
automorphism of G.

Suppose that G has a transitive permutation representation on the set
(2, and choose o € Q. Then this representation is permutationally iso-
morphic to the representation of G, acting by right multiplication, on
the right cosets of the point stabilizer G, [NST94, Theorem 6.3]. If
¢ € AutG, then G also has a transitive permutation representation,
acting by right multiplication, on the set Q* of right cosets of the sub-
group K := (G, )y, and

0:0 = K(gp) (a€egeqd)

is a well-defined bijection 6 : @ — Q*. Moreover the pair (6,¢) is an
equivalence between the permutation representations of G on 2 and on
2*. Of course (8, ) is by definition a permutational isomorphism if and
only if ¢ is the identity. However the permutation representations of G
on ) and on Q* are permutationally isomorphic if and only if G, and
K are conjugate in G [NST94, Theorem 6.3 and Proposition 6.5]. We
see from this discussion that, in general, two transitive representations
of G are permutationally isomorphic if and only if a point stabilizer for
one representation is in the same conjugacy class in G as a point sta-
bilizer for the other representation. Moreover, there is a permutation
representation of Aut G on the set of permutational isomorphism classes
of transitive permutation representations of G such that InnG is con-
tained in the kernel. So in fact we have a permutation representation
induced of Out G := Aut G/Inn G on these permutational isomorphism
classes. The orbits of AutG (and of Out G) correspond to the permu-
tational equivalence classes of transitive permutation representations of
G. Thus the permutational isomorphism classes (respectively permuta-
tional equivalence classes) of transitive permutation representations of
G are in one-to-one correspondence with the conjugacy classes of sub-
groups of G (respectively orbits of Aut G, and hence of Out G, on these
conjugacy classes).

The classification of transitive permutation representations in this book
is up to permutational isomorphism, which is the same as the classifica-
tion up to conjugacy of the point stabilizers.

Two different permutational isomorphism classes of transitive represen-
tations correspond to the same permutational equivalence class if and
only if there is an outer automorphism of G mapping one permutational
isomorphism class to the other. In the case where G is a sporadic simple
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group, |Out G| < 2. Hence, in this situation, an outer automorphism of
G will interchange the two permutational isomorphism classes, and will
also interchange the corresponding conjugacy classes of point stabilizers.
We will point this out whenever it occurs.

1.5 Invariant partitions and primitivity

If G is a permutation group on a set {2, then a partition P of 1 is said
to be G-invariant (and G is said to preserve P) if the elements of G
permute the blocks of P blockwise, that is, for B € P and g € G, the
set BY is also a block of P. The blocks of a G-invariant partition are
called blocks of imprimitivity for G. If G is transitive on Q then all
blocks of a G-invariant partition P of 2 have the same cardinality and
G acts transitively on P. Moreover, every permutation group G on Q
preserves the two partitions {Q} and {{a} | a € Q}; these are called
trivial partitions of (2, and their blocks, 2 and {a} for a € Q, are called
trivial blocks of imprimitivity. All other partitions of  are said to be
nontrivial. A permutation group G is said to be primitive on  if G is
transitive on ) and the only G-invariant partitions of Q are the trivial
ones. Also G is said to be imprimitive on Q if G is transitive on  and
G preserves some nontrivial partition of .

1.6 The O’Nan-Scott theorem for finite primitive
permutation groups

It is not difficult to see that the set of orbits of a normal subgroup
of a transitive permutation group G on (Q is a G-invariant partition
of 2. Thus each nontrivial normal subgroup of a primitive permutation
group is transitive. In particular, for finite primitive permutation groups
G on Q) the socle of G, soc(G), which is the product of its minimal
normal subgroups, is transitive on . Several different types of finite
primitive permutation groups have been identified in the O’Nan-Scott
Theorem ([Sco80, AS85] or see [LPS88]) and are described according to
the structure and permutation action of their socles.

A finite primitive permutation group G has at most two minimal normal
subgroups, and if M, N are distinct minimal normal subgroups of G,
then M =2 N, M and N are nonabelian, and both act regularly on Q
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(see [Sco80] or [LPS88]). (A permutation group on Q is regular if it is
transitive, and only the identity element fixes a point of 2.)

For most of the types of finite primitive groups, the socle is the unique
minimal normal subgroup, and for all types the socle is a direct product
of isomorphic simple groups. The types of finite primitive permutation
groups are described in [LPS88] as follows. Let G be a primitive per-
mutation group on a finite set Q, and let N := soc¢(G). Then N = T*
for some simple group T' and positive integer k, and one of the following
holds.

Affine type. Here N = Zz’f (p a prime) is elementary abelian, N is the
unique minimal normal subgroup of G, N is regular on ), and
€ can be identified with a finite vector space V in such a way
that N is the group of translations of V and G is a subgroup of
the group AGL(V) of affine transformations of V.

Amost simple type. The socle N = T is a nonabelian simple group
(k =1),s0 T < G < AutT, that is, G is an almost simple
group. Also T, # 1.

For the remaining types N = T* with k > 2 and T a nonabelian simple
group.

Simple diagonal type. Here G is a subgroup of the group

W = {(a1,...,0).m|a; € AutT,7 € Sy,
a; = aj (mod InnT) for all ¢, j},

where 7 € S} permutes the components a; naturally. With the
obvious multiplication, W is a group with socle N = T*, and
W = N.(OutT x Si), a (not necessarily split) extension of N
by Out T x Si. The action of W on Q is equivalent to its action
by right multiplication on the set of right cosets of its subgroup

Wo:={(a,...,a).n |a € AutT,m € S} = AutT x S;.

The group G must contain N, and N, = {(a,...,a) |a€ T} is
a diagonal subgroup of NV, hence the name ‘diagonal type’.

Product type. For this type, G is a subgroup of a wreath product W :=
H wr S; in product action on Q = A!, where [ > 2 and ! divides
k, H is a primitive permutation group on A, soc(H) = T*/!,
and N = soc(W) = soc(H)! is contained in G. The group H is
of either almost simple or simple diagonal type.



1.7 Eazisting classifications of low rank primitive groups 9

Tuwisted wreath type. For this type, G = T'twr, P = T*.P is a twisted
wreath product, where P < S, and N is regular on 2.

More information about the structure of these groups can be found in
[AS85, Sco80, LPS88].

1.7 Existing classifications of low rank primitive groups

Long before the description of finite primitive permutation groups that
we find in the O’Nan-Scott Theorem had been written down, W. Burn-
side [Burll, Section 154] proved that a finite 2-transitive group is of
either affine or almost simple type. In fact, the minimum ranks for fi-
nite primitive groups of the other types tend to be higher than those for
primitive groups of affine or almost simple type, and it follows from the
O’Nan-Scott Theorem that the finite primitive groups of rank at most
5 are essentially known once the almost simple ones and the affine ones
have been classified (see [Cuy89]). According to the finite simple group
classification a nonabelian finite simple group T is either an alternating
group, a group of Lie type, or one of the 26 sporadic simple groups (see
[Gor82]). Thus the socle T of an almost simple group G is a simple
group of one of these types.

The finite 2-transitive groups have been completely classified using the
finite simple group classification, and this result is the culmination of
the work of many people. The 2-transitive representations of the finite
symmetric and alternating groups were classified by E. Maillet [Mai1895]
in 1895. Those of the finite almost simple groups of Lie type were
determined by C.W. Curtis, W.M. Kantor and G.M. Seitz [CKS76] in
1976, and the classification of the 2-transitive groups of almost simple
type was completed and announced by P.J. Cameron [Cam81} in 1981 as
a consequence of the finite simple group classification. The finite soluble
2-transitive groups were classified by B. Huppert [Hup57] in 1957; the
major part of the classification of the finite insoluble 2-transitive groups
of affine type was done by C. Hering [Her74, Her85], and a complete
and independent proof of the classification of finite 2-transitive groups
of affine type was given by M.W. Liebeck [Lie87, Appendix 1].

A great deal of effort has gone into understanding low rank primitive
permutation groups, in particular those of rank at most 5. It follows
from the O’Nan-Scott Theorem (see [Cuy89, Corollary 2.2]) that, if G
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is primitive of rank at most 5 on a finite set 2, then either G is of affine
or almost simple type, or G is a subgroup of a wreath product H wr .S,
in product action on 2 = A¥, where k € {2,3,4} and H is an almost
simple 2-transitive permutation group on A, or G has simple diagonal
type with socle isomorphic to La(g) x La(g) for some ¢ € {5,7,8,9}.
Thus a classification of primitive permutation groups of rank up to 5 is
reduced to a classification of those of affine or almost simple type.

We consider the almost simple case first. In 1972 E.E. Bannai [Ban72)
classified all primitive permutation representations of rank at most 5 of
the finite alternating and symmetric groups. In 1982 W.M. Kantor and
R.A. Liebler [KL82] classified the primitive rank 3 representations of
the classical groups (see also [Sei74]). In 1986 M.W. Liebeck and J. Saxl
[LS86] found all the primitive rank 3 representations of the exceptional
simple groups of Lie type, and A. Brouwer, R.A. Wilson and L.H. Soicher
(see [LS86]) determined those of the sporadic simple groups, thereby
completing the classification of almost simple primitive rank 3 groups.
In 1989, H. Cuypers [Cuy89] completed the classification of all primitive
representations of rank at most 5 of all finite almost simple groups of Lie
type. Part of the purpose of this book is to complete the classification
of the almost simple primitive groups of rank at most 5 by classifying
all such representations of the sporadic almost simple groups. Note that
the sporadic almost simple groups are the sporadic simple groups and
their automorphism groups, since a sporadic simple group has index at
most 2 in its automorphism group.

Finite soluble primitive groups of rank 3 are primitive groups of affine
type and were classified by D.A. Foulser [Fou69] in 1969. The classi-
fication of all primitive rank 3 groups of affine type was completed by
M.W. Liebeck [Lie87] in 1987. From these results, and the results pre-
sented in this book, it follows that to complete the classification of finite
primitive permutation groups of rank at most 5, only the affine primitive
groups of rank 4 and 5 remain to be classified.

1.8 Low rank sporadic classification

In this book we classify all (primitive and imprimitive) faithful transitive
permutation representations of rank at most 5 of the sporadic simple
groups and their automorphism groups. The rank 2 case is included
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for completeness, and the rank 3 case expands the list in [LS86] by
classifying all imprimitive rank 3 representations of these groups.

We also provide detailed information about the digraphs on which the
permutation groups we describe act vertex-transitively. Background
about such graphs is given in Chapter 2, and a discussion of the meth-
ods used in our investigations is in Chapter 3. Chapter 4 contains the
main body of our work, with the description of the representations and
digraphs for the individual sporadic groups, together with many pre-
sentations, and Chapter 5 summarizes the representations and distance-
regular graphs classified.



